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Abstract

Large language model (LLM)-based Al agents extend LLM capabili-
ties by enabling access to tools such as data sources, APIs, search
engines, code sandboxes, and even other agents. While this empow-
ers agents to perform complex tasks, LLMs may invoke unintended
tool interactions and introduce risks, such as leaking sensitive data
or overwriting critical records, which are unacceptable in enter-
prise contexts. Current approaches to mitigate these risks, such
as model-based safeguards, enhance agents’ reliability but cannot
guarantee system safety. Methods like information flow control
(IFC) and temporal constraints aim to provide guarantees but often
require extensive human annotation. We propose a process that
starts with applying System-Theoretic Process Analysis (STPA) to
identify hazards in agent workflows, derive safety requirements,
and formalize them as enforceable specifications on data flows and
tool sequences. To enable this, we introduce a capability-enhanced
Model Context Protocol (MCP) framework that requires structured
labels on capabilities, confidentiality, and trust level. Together, these
contributions aim to shift LLM-based agent safety from ad hoc reli-
ability fixes to proactive guardrails with formal guarantees, while
reducing dependence on user confirmation and making autonomy
a deliberate design choice.
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New event created: "STD treatment appointment” tomorrow 12-1 PM.

Im There is a 1-hour work meeting with Bob at

12 PM. Move it to 3 PM?

Yes, sure. g

Figure 1: Agent conversation leaking sensitive information.

I've rescheduled the meeting and sent an
email to Bob, titled ‘Rescheduled due to STD
treatment appointment.’

1 Introduction

Al agents are emerging as a common pattern for LLM applications,
giving models the capabilities to interact with the environment and
make autonomous decisions. Instead of instructing a model with a
series of carefully crafted prompts, agents shift control by delegat-
ing planning to an LLM, granting access to tools like code execution
sandboxes, APIs (e.g., email, calendars), databases, web search, and
even other agents. This enables agents to handle complex tasks
in flexible and possibly creative ways with minimal programming,
demonstrating usefulness in complex areas and enterprise contexts,
including customer support agents that retrieve order data to assist
with bookings, cancellations, and other multi-step requests [36],
as well as customer relationship management (CRM) agents that
analyze business data and support tasks ranging from data analysis
to marketing decision-making [15].

The recent Model Context Protocol (MCP) aims to standardize
and simplify how agents interact with the environment through
tools [24]. However, enabling agents to initiate and control envi-
ronment interactions introduces new risks, as agents may act on
untrusted data, instructing people to take actions or operating ac-
tuators such as robots or locks. This is particularly challenging as
problematic behavior may emerge from the interactions of multi-
ple tool calls. For example, a recent GitHub case showed injected
instructions causing an agent to leak private repository data by
first reading sensitive files and then publishing their contents in a
public commit or pull request [23]. Whether from malicious inputs
or model errors, such issues are often caused by unconstrained tool
composition and can be difficult to foresee.
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Safety and security are widely recognized as key obstacles to de-
ploying agents beyond exploratory use [9]. For instance, while some
developers use coding agents carefully and review every change
and approve each tool use, many allow automated actions with
little oversight, accepting risks such as accidental file deletion and
malicious code execution, which pose serious challenges in enter-
prise settings. Researchers are actively investigating defenses, but
existing strategies remain inadequate at scale. Human-in-the-loop
confirmation is a common approach [20], yet excessive notifications
cause habituation and security fatigue [31]. Model-based judges
and pattern-matching filters can catch some problems but provide
no guarantees [6, 12, 14, 35, 40]. Information-flow defenses, the
foundation of our project, show promise by tracking sensitive data
propagation, but existing work largely focuses on prompt injection
attacks [7, 39].

Our vision is to move from probabilistic safeguards to guardrails
that provide guarantees. We aim to provide guarantees about what
data can flow where and when tools may be called, even if this
means accepting reduced autonomy and utility in exchange for
stronger assurances. The rest of the paper develops this vision
using two ingredients: safety engineering to identify hazards and
derive explicit requirements that can be enforced at tool boundaries
and information-flow control to enforce data movement constraints.

2 Problem

Integrating ML components in software introduces uncertainty.
This is amplified when agents extend them with external tools and
services. An agent works iteratively: In each loop, the model plans
and decides whether to call tools; if a tool is called, its result feeds
back into the next iteration so that the model can process it [37].
MCP standardizes tool access across providers [24], expanding ca-
pabilities but also making it easy to add tools that can then interact
in ways that are difficult to anticipate and control.

Feature Interactions and Emergent Failures. Complex sys-
tems often fail not from faulty components but when independently
safe features conflict, producing hidden hazards at runtime [2, 5].
Such interactions can introduce security problems [26, 38]. In ma-
chine learning (ML), the lack of explicit specifications makes such
errors even harder to predict [19]. This applies directly to Al agents,
where risks stem less from individual tool calls than from the com-
position of tools, data flows, and contexts, such as the output of a
tool flowing into the LLM which then may select another tool and
generate its inputs.

Limits of Model-Based Safeguards. Recent safeguards based
on ML models aim to improve agent safety by wrapping agents
with auxiliary models that screen inputs/outputs, monitor oper-
ations, and block suspicious tool calls. For example, GuardAgent
[35] turns user-provided guard requests into executable checks,
ShieldAgent [6] derives verifiable rules from policy documents, and
TrustAgent [14] applies a fixed constitution of safety principles
across planning stages, while Agent-as-a-Judge provides step-wise
evaluation and feedback [41]. Efforts to detect prompt injections
include attention-based anomaly detection and classifiers over tool
inputs and outputs [16, 18]. These techniques primarily improve
reliability, that is, increase the chance that attacks are detected, but
a persistent attacker may only need one successful attempt and may

Doshi et al.

be able to tailor attacks for specific defenses [12]. In high-assurance
domains like protecting customer data or medical records, even
low-likelihood risks may be unacceptable, motivating deterministic
guardrails that eliminate unsafe flows rather than merely reducing
their probability.

3 Motivating Example

For tool-using agents that interact with the environment, uncer-
tainty can lead to real losses, making guaranteed safety essential in
many production settings.

To illustrate the challenges of safeguarding agent risks and our
proposed approach, we use a seemingly simple calendar agent as a
motivating example. Its purpose is to automatically resolve sched-
uling conflicts after each calendar edit. Conflicts often lack a single
solution—meetings may be delayed, canceled, or rescheduled—yet
all require timely resolution and notification of participants. This
is where the additional flexibility of an agent that may negotiate
over email can be helpful over hard-coded resolution strategies.
Our example agent is equipped with three tools to access external
APIs:

e list_events: list all events with their details.
e update_event: modifies the details of a given event.
e send_email: sends an email to an address.

We deliberately focus on task-specific agents, in line with prior
research emphasizing application-specific design [4]. General-purpose
agents are difficult to secure because with their wide scope it is
difficult to articulate precise safety requirements. We argue that
narrow, task-specific agents are more feasible to secure, while still
offering value for automated tasks in corporate settings, such as
rescheduling meetings.

This seemingly simple, task-specific agent can pose risks: Whether
due to natural model mistakes or deliberate attacks, it could mistak-
enly reschedule high-priority meetings, overwrite or delete critical
events, or disclose sensitive details in email notifications. We illus-
trate one such case without an attacker in Figure 1: A user schedules
a sexually transmitted disease (STD) treatment appointment that
conflicts with a meeting; the agent resolves the conflict, but acci-
dentally discloses sensitive appointment details in the notification
email to colleagues.

In this example, we might try to mitigate risks by using LLMs to
check whether an outgoing email includes sensitive details [6, 12,
14, 33, 35, 41]. This would require that we anticipate this problem,
and the agent could still accidentally leak private information if the
LLM fails to infer sensitive context from the appointment title. It
could also wrongly block benign content, undermining dependable
use in corporate settings.

Given these challenges, this paper addresses the following prob-
lem: How can we anticipate hazards in Al agents, and how can we
provide guarantees that these hazards will not cause unsafe outcomes,
in a practical way that minimizes human effort?

4 Vision: Task-Specific Agents with Guarantees

Our approach combines safety engineering to identify hazards with
information flow control to enforce constraints.
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STPA and Safety Engineering. System-Theoretic Process Anal-
ysis (STPA) [21] is a safety engineering method widely used in high-
risk domains such as aviation and autonomous vehicles. It iden-
tifies system-wide safety constraints by focusing on interactions
rather than isolated component failures. This systems perspective
is especially suited to software, where hazards often emerge from
interactions among requirement flaws, hardware faults, human
error, and environmental conditions rather than from single points
of failure [1]. Recent work extends STPA to ML systems, which
introduce additional risks due to the inherent unpredictability of
model-based components [13, 25, 28].

Information Flow Control (IFC). IFC has long been used
to provide security guarantees, such as preventing data leakage
[10]. Classic methods attach confidentiality/integrity labels to data
and reject programs whose flows violate policy, for example when
unsanitized inputs reach SQL queries [22]. For Al agents, a key chal-
lenge is that tool outputs are often concatenated into the model’s
context, allowing a tool output to influence all subsequent reason-
ing. To address this, recent work explores a range of strategies,
from using formal rules or domain-specific languages that specify
and enforce safe data-flow policies between tools [3, 7], to taint-
tracking-style runtime mechanisms to propagate labels in contexts
without assuming that the entire context is contaminated [30, 39],
to constraining the temporal ordering of actions [29], as well as vari-
able masking [7] and access control [27, 32] to limit the information
or capabilities available to an agent.

Two recurring limitations emerge across this literature. First,
labels are often costly to manually obtain or depend on unreliable
inference, leaving enforcement gaps. Second, most IFC research
on agents focuses narrowly on indirect prompt injection attacks
rather than addressing broader problems such as safety or secu-
rity tradeoffs, capabilities, and autonomy. IFC has the potential to
guarantee that unsafe flows cannot occur, rather than depending
on probabilistic checks. We therefore focus on IFC as a developer
tool for reasoning about safety and security in agent interactions,
prioritizing proactive design over probabilistic enforcement and
reducing reliance on costly manual or inferred labels.

4.1 Identifying Agent Requirements

To anticipate the problems against which to safeguard (e.g., leaking
sensitive information in meeting titles), we adapt the steps of the
STPA framework to agents: First we identify direct and indirect
stakeholders (for the calendar agent, direct stakeholders include
the user, while indirect stakeholders include other event attendees).
Then, for each stakeholder, we derive a set of values they expect
from the system, and then invert these values into potential losses
(in our example, a user may value privacy, with the correspond-
ing loss being leakage of private information; event attendees may
value timely communication, with the associated loss being de-
lays in receiving event updates). Next, we analyze which system
behaviors could lead to a loss (e.g., private information included
in email communication). Finally, we evaluate which losses are
important enough to address, deriving corresponding safety and
security requirements that define the agent’s expected behavior. In
our example, we might arrive at the following two requirements:
(REQ1) Event notification emails shall include only essential event
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details (time, location, title, description). Private information, such as
personal reasons for the update, must not be included unless explicitly
authorized by the user. (REQ2) Whenever the agent updates an event,
it shall promptly notify all other event attendees of the change.

4.2 Defining and Enforcing Agent Specifications

Requirements are abstract system goals that a model may proba-
bilistically interpret but that cannot be verified. To provide formal
guarantees, they must be transformed into symbolic specifications.
As noted in Section 2, prior work explored techniques such as IFC,
access control, and temporal logic [3, 7, 27, 29, 30, 32, 39], showing
their potential in enforcing certain constraints. In our motivating
example, the two requirements above can be refined into the fol-
lowing two specifications (SPECs), respectively: (SPEC1) All event
details are private to non-attendees. Information derived from other
information inherits equal or stricter privacy constraints. Users may
explicitly confirm privacy labels. Each send_email call must exclude
data private to the recipient. (SPEC2) Each update_event invocation
must be directly followed by one send_email to every event attendee.

SPEC1 is an information flow constraint, while SPEC2 is a tem-
poral logic constraint. In practice, these specifications capture some
necessary information, including sources and sinks for IFC. Addi-
tional context, such as tool call rules, may come from the system
level, while labels like “private” or “trusted” need to be assigned at
runtime, as discussed in Section 4.3.

Given specifications, to balance safety and flexibility while re-
ducing manual effort, we adopt a four-tier enforcement structure.
Here, “flow” refers broadly to constraints on both tool-sequence
ordering and information flow:

o Blocklist: Automatically deny unacceptable flows. E.g., Pre-
vent private data from flowing into send_email (SPECI).

e Mustlist: Require certain flows. E.g., After each update_event,
send_email must be called once per attendee (SPEC2).

o Allowlist: Permit safe flows without user confirmation. E.g.,
The first confirmation email to each attendee after an update
requires no confirmation on its necessity (SPEC2).

o Confirmation: Require user to confirm ambiguous or high-
stakes actions. E.g., The user must confirm if private informa-
tion should be included in an email (SPEC1).

In the motivating example, the four-tier structure provides mul-
tiple strategies to prevent safety violations while supporting dif-
ferent levels of autonomy. A conservative policy may blocklist
send_email call after 1ist_events, so that no private event de-
tails are included in emails. A more flexible approach could be the
agent masking unrelated event data from its context before com-
posing the email. Developers willing to accept some risk might
allowlist emails that use preapproved templates or apply keyword
filters to reduce risks. Finally, confirmations could be applied selec-
tively, for instance, required when emailing external recipients but
skipped for internal communications.

This structure provides better flexibility between safety and capa-
bility, as it ensures that (1) low-risk flows proceed automatically, (2)
unacceptable flows are deterministically blocked, and (3) uncertain
or moderate-risk flows are escalated for human oversight.

Crucially, these SPECs should be enforced by entities indepen-
dent of the agent, rather than hoping the agent will follow rules.
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Prior work explored variable masking [7], separating control flow
[8], and sandboxing [34] as ways to partition context. We envision
that each tool call is intercepted and evaluated before execution,
ensuring the agent cannot bypass constraints.

4.3 Acquiring Structured Information Labels

As noted above, enforcing constraints requires certain runtime
information, particularly IFC labels. Existing approaches often de-
pend on manual labeling [7] or inference from data origin with
propagation only when deemed influential [30, 39]. This makes
labels costly, while also leaving them potentially inconsistent and
untrusted at tool boundaries.

MCP defines the boundary where tools are declared and invoked,
but it offers only minimal, optional annotations and advises treating
tools as untrusted. Therefore, clients cannot reliably obtain labels,
making it impossible to enforce SPECs at runtime.

We propose extending MCP declarations to require key-value
tags instead of optional hints. For instance, an event title could be
tagged “public” or “private” under the key “confidentiality,” and
tagged “yes,” “no,” or “unsure” under the key “is_PIL” This flexible
tagging scheme supports arbitrary keys with categorical or uncer-
tain values, enabling richer safety policies. For example, flows from
data marked {'confidentiality': 'private'} to tools with
{'capabilities': 'external_write'} can be deterministically
blocked, while {"is_PII': 'unsure'} can trigger a confirmation.

We envision that MCP servers provide at least the following
three labels, enabling developers to use the richer information to
implement the enforcement structure described above:

e Capabilities: read-only, write-only, read-write, execute, etc.
o Data Confidentiality: whether information is sensitive.
o Trust Level: whether outputs are verified or untrusted.

For in-house tools, this MCP metadata can likely be trusted, but
for an open market (where some even envision that agents could
discover which tools to use), additional mechanisms will be needed
to establish trust in the metadata. In corporate contexts, this may
involve limiting agents to tools from trusted vendors or requiring
label certification before integration. Eventually it may even be
possible to verify some metadata against the tool implementation.

5 Preliminary Results and Discussion

To demonstrate the feasibility of our approach, we developed and
analyzed a formal model of the augmented MCP framework in
Alloy, a modeling language based on first-order relational logic
[17]. Alloy was chosen because (1) its logic is expressive enough
to model tool and agent behaviors, and (2) its analysis engine can
formally verify whether system constraints satisfy safety specifi-
cations. Beyond this demonstration, we envision using Alloy or
similar tools for formal analysis to provide guarantees about the
safety of an augmented MCP framework.

Our Alloy model encodes execution steps, tool functions, and
exchanged messages, each annotated with labels for confidentiality
and integrity. Tool capabilities are formally defined: for example,
send_email requires an email address, a title, and content, and
must never receive unrelated private information unless explicitly
declassified.
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Hazardous flows are formalized as predicates in Alloy - Boolean
conditions that describe when a property holds in a given system
state. For example, private_leak is true if private data reaches
an unauthorized tool. Mitigations are modeled as sanitation steps
(e.g., UserConfirmation, Declassify) that must occur at specific
points in the trace, such as requiring confirmation before sending
data to an untrusted sink.

The Alloy Analyzer then exhaustively explores bounded exe-
cution traces to check whether hazardous predicates can still be
satisfied despite these mitigations, thereby ensuring that unsafe
flows are eliminated. In our context, without policies, the analyzer
quickly identifies counterexamples to safety specifications, such as
private data leaking into an external email. With policies and sani-
tation steps enforced, Alloy confirms that safety violations cannot
occur with the given tools, while safe traces remain (e.g., creating
an event, rescheduling it, and emailing participants without leaking
private data). This demonstrates that unsafe flows can be determin-
istically blocked without collapsing the agent’s capabilities.

By reasoning explicitly about hazards and enforcing constraints,
autonomy becomes a configurable choice of agents [11]. Developers
can tailor policies to match the severity and likelihood of risks
they are prepared to accept, depending on the agent’s role and the
environment’s stakes. Crucially, users are prompted only when a
decision may lead to an actual loss, not every tool call.

Finally, this framing recognizes that Al agents are not universally
suitable. In safety-critical or high-stakes settings, agents may war-
rant very limited autonomy, or exclusion altogether. While agents
can enhance capability, they also introduce new safety risks, and
this tradeoff must be made carefully. Our contribution offers a struc-
tured process to reason about these tradeoffs explicitly, rather than
defaulting to unchecked capability maximization.

6 Future Plans

For the next steps, we plan to design and implement an exter-
nal policy engine that intercepts tool calls in agent frameworks,
showing that the label-based constraints and formal specifications
can be enforced in real-world systems. In parallel, we will explore
how developers can efficiently author and maintain labels through
key-value tagging. We also intend to evaluate our process across a
broader set of real-world tools and workflows, measuring coverage
of risky interactions, usability impacts like notification fatigue, and
tradeoffs between safety and utility in different domains. Beyond
this, we will investigate extending labels to capture richer properties
such as identity, scope, and provenance, enabling the detection of
impersonation risks, provisioning attacks, and excessive delegation
of authority. Together, these efforts will advance structured hazard
analysis and label-enforced guardrails as a practical foundation for
building safe and reliable Al agents.
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