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Abstract

Abstract meaning representation (AMR) is001
a special semantic representation language002
that captures sentences’ meaning with syntax-003
irrelevant graphs. AMR-to-text generation004
aims to generate text according to a given AMR005
graph and is helpful in various downstream006
NLP tasks. Existing AMR-to-text generation007
methods roughly fall into two categories, each008
with pros and cons. The sequence-to-sequence009
models, especially pretrained language models010
(PLMs), have good text generation ability but011
cannot cope well with the structural informa-012
tion of AMR graphs. The graph-to-sequence013
models utilize graph neural networks (GNNs),014
showcasing complementary strengths and lim-015
itations. Combining both methods could har-016
ness their strengths; yet, merging a GNN with017
a PLM is non-trivial. In this paper, we pro-018
pose DualGen, a dual encoder-decoder model019
that integrates a specially designed GNN into020
a sequence-to-sequence PLM. We conduct ex-021
tensive experiments, human evaluation, and a022
case study, finding that DualGen achieves the023
desired effect and yields state-of-the-art per-024
formance in the AMR-to-text generation task.025
We also show it outperforms the most potent026
general-purpose PLMs, LLaMA and GPT-4.027

1 Introduction028

Abstract meaning representation (AMR) is a seman-029

tic representation language representing sentences’030

meaning as rooted, directed, and labeled graphs,031

free from syntactic idiosyncrasies (Banarescu et al.,032

2013). In AMR graphs, nodes depict entities,033

events, and properties, while edges denote node034

relationships. Figure 1 exemplifies an AMR graph035

with two formats.036

AMR-to-text generation aims to generate text037

with the same meaning as an AMR graph. It is a038

well-established task that is useful in various down-039

stream applications, including text summarization040

(Liu et al., 2015; Takase et al., 2016), machine041

translation (Jones et al., 2012; Song et al., 2019), 042

and information extraction (Zhang and Ji, 2021). 043

Figure 1 illustrates AMR-to-text generation. 044

Previous studies of AMR-to-text generation em- 045

ploy two kinds of architectures. The first one is the 046

sequence-to-sequence (s2s) model, which uses a 047

sequence encoder to process the linearized AMR 048

graphs and a sequence decoder to generate text 049

(Konstas et al., 2017; Cao and Clark, 2019). Bene- 050

fiting from the strong language ability of pretrained 051

language models (PLMs) (Lewis et al., 2020; Raf- 052

fel et al., 2020), recent s2s AMR-to-text models 053

have achieved leading results (Ribeiro et al., 2021a; 054

Bevilacqua et al., 2021; Bai et al., 2022). However, 055

linearized AMR graphs that s2s models take as 056

inputs suffer from information loss, resulting in 057

reduced performance (Ribeiro et al., 2021b; Song 058

et al., 2018; Beck et al., 2018). 059

The second one is the graph-to-sequence (g2s) 060

model (Song et al., 2018, 2020; Beck et al., 2018; 061

Guo et al., 2019), which consists of a graph neural 062

network (GNN) encoder and a sequence decoder. 063

Different from s2s models, g2s models can cap- 064

ture the complete structural information of AMR 065

graphs with GNN encoders. They usually outper- 066

form un-pretrained s2s models (Song et al., 2020), 067

particularly for complex graphs. However, because 068

g2s models cannot be pretrained on corpora, they 069

exhibit weaker overall performance than PLMs. 070

In this paper, to combine the strengths of both 071

s2s and g2s models, we introduce DualGen, a dual 072

encoder-decoder model, using BART (Lewis et al., 073

2020) as the foundation model.1 Based on the s2s 074

architecture of BART, we add a GNN encoder. In 075

this way, DualGen is expected to take complete 076

information of AMR graphs while benefiting from 077

the strong language capabilities of PLMs. 078

Integrating a GNN encoder into a pretrained 079

Transformer-based PLM is non-trivial. First, all 080

1DualGen is applicable to other Transformer-based PLMs.
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Figure 1: Illustration of two equivalent formats of an AMR graph and the AMR-to-text generation task. “ARG0”,
“ARG1”, and “degree” are edge labels. In linearized format, nodes are denoted by abbreviations, e.g., “f” denotes
“feel-01”. The linearized format is indented for better readability.

existing AMR datasets are inadequate to train a081

GNN encoder of a similar size as the sequence en-082

coder from scratch. Second, no pretrained GNNs083

tailored for language tasks are available; prior stud-084

ies employing dual-encoders for NLP tasks initiate085

GNN training from the ground up. To address these086

challenges, we design a specialized GNN encoder087

that can be initialized with PLM parameters and088

seamlessly integrated with the PLM.089

Experiment results on datasets AMR2.0 and090

AMR3.0 demonstrate that DualGen outperforms091

the state-of-the-art method (Bai et al., 2022) and092

the most potent PLMs, LLaMA and GPT-4 across093

multiple metrics. We conduct quantitative and qual-094

itative analyses, demonstrating that DualGen excels095

in processing graph structures while maintaining096

text generation quality on par with PLMs. We find097

that DualGen particularly excels in handling com-098

plex graphs compared with s2s models, showing099

that DualGen combines the strengths of both g2s100

and s2s models. We conduct a human evaluation101

and a case study that further validate these findings.102

2 Related Work103

AMR-to-text generation. AMR-to-text genera-104

tion involves transforming AMR graphs into the105

corresponding text. One approach for AMR-to-106

text generation employs a sequence-to-sequence107

(s2s) model that consists of a sequence encoder108

and a sequence decoder. The first neural model109

for this task (Konstas et al., 2017) uses stacked110

bidirectional LSTM, while recent studies adopt111

the Transformer architecture (Vaswani et al., 2017)112

and employ pretrained language models (PLMs).113

Ribeiro et al. (2021a) proposes adaptive pretrain-114

ing, while Bevilacqua et al. (2021) explores lin-115

earization methods. Mager et al. (2020) introduces116

an additional rescoring stage and explores joint117

probability. Bai et al. (2022) employs graph pre-118

training. The sequence encoder can only take lin-119

earized AMR graphs as input. However, lineariza- 120

tion causes a loss of graph structure information. 121

Another approach employs a graph-to-sequence 122

(g2s) model, which consists of a graph neural net- 123

work (GNN) encoder and a sequence decoder. Var- 124

ious GNN encoders have been explored, including 125

gated GNN (Beck et al., 2018), graph LSTM (Song 126

et al., 2018), graph convolutional network (Guo 127

et al., 2019), and graph attention network (Song 128

et al., 2020; Koncel-Kedziorski et al., 2019; Cai and 129

Lam, 2020). While the g2s model can effectively 130

handle graph structures, it cannot process text. Con- 131

sequently, it cannot be pretrained by textual data, 132

which limits its language generation ability. 133

To combine the strengths of s2s and g2s mod- 134

els, Ribeiro et al. (2021b) employs a PLM-based 135

approach, incorporating a graph convolutional net- 136

work (GCN) adapter following the sequence en- 137

coder for better graph handling. Unlike DualGen, 138

which uses a dual encoder architecture, Ribeiro 139

et al. (2021b) employs an un-pretrained GCN and 140

only fine-tunes the GCN while keeping others 141

frozen. Later experimental results show the su- 142

periority of our method over this model. 143

Dual encoder architecture. Dual encoder archi- 144

tecture is widely used in NLP. In generative models, 145

prior work mainly employs un-pretrained models. 146

For instance, Junczys-Dowmunt et al. (2018) uti- 147

lized two un-pretrained encoders and a decoder 148

to recover translation errors. Zhang et al. (2021) 149

applied two un-pretrained encoders and two un- 150

pretrained decoders for dialogue summarization. 151

For pretrained models, Dou et al. (2021) employs 152

two Transformer encoders and a Transformer de- 153

coder for text summarization. However, to our 154

knowledge, there has been no prior dual encoder- 155

decoder model that simultaneously uses distinct 156

architectures for the two encoders while utilizing 157

pretrained models for both encoders. Also, no prior 158

research has employed the dual encoder architec- 159
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Figure 2: The architecture of the DualGen model.

ture for AMR-to-text generation.160

For non-generative tasks, dual encoder architec-161

ture is employed in tasks including similarity mea-162

surement (Mueller and Thyagarajan, 2016; Yang163

et al., 2018), context-based candidate selection164

(Shyam et al., 2017), and information retrieval165

(Pang et al., 2017).166

3 Method167

In this section, we provide a detailed description168

of DualGen. We convert the AMR graph into a lin-169

earized and graphical format (Section 3.1), which170

is then fed into the dual encoder-decoder model171

(Section 3.2). Following prior research, we employ172

a two-stage training (Section 3.3).173

3.1 Data Processing174

We replace the nodes of AMR graphs with their175

original labels, omitting the PropBank (Palmer176

et al., 2005) indexes. For example, the node177

f/feel-01 in Figure 1 is transformed into feel.178

We use the DFS-based approach as per Bevilac-179

qua et al. (2021) to linearize. For tokenization,180

we follow the BART method for both encoders,181

similarly tokenizing the linearized AMR sequence,182

nodes, and edges. This allows us to calculate se-183

quence and graph embeddings with shared embed-184

ding parameters across the two encoders.185

3.2 Model Architecture186

DualGen adopts a dual encoder-decoder architec-187

ture comprising a Transformer-based sequence188

encoder, a GNN-based graph encoder, and a189

Transformer-based sequence decoder, as depicted 190

in Figure 2. The sequence and graph encoder take 191

linearized and graph AMRs as input, respectively. 192

Sequence encoder: The sequence encoder is a 193

Transformer encoder, initialized with BART param- 194

eters, as illustrated in the left part of Figure 2. It 195

accepts the linearized AMR as its input. 196

Graph embeddings: The graph embeddings 197

comprise node and edge embeddings, which share 198

parameters with the sequence encoder and the se- 199

quence decoder embeddings. For a token t in the 200

vocabulary, its word embedding is t ∈ Rdembed . 201

Given an AMR graph G = ⟨V,E⟩, where V is 202

the node set and E is the edge set. Each node and 203

edge is labeled with one or more words. The words 204

are divided into multiple tokens during tokeniza- 205

tion. These tokens are subsequently used to gener- 206

ate embeddings for nodes and edges. A node v ∈ V 207

is denoted by lv tokens tv1, t
v
2, · · · , tvlv . An edge 208

e ∈ E is denoted by me tokens te1, t
e
2, · · · , teme

. 209

As Figure 3 shows, for a node v ∈ V, its node 210

embedding is the average embedding of all its cor- 211

responding tokens v = 1
lv

∑lv
k=1 t

v
k. 212

To facilitate two-way information exchange 213

along edges, we introduce two linear projections 214

from Rdembed to Rdedge for forward and backward 215

edges, defined by matrices WF ,WB and bias 216

bF ,bB . For an edge e from node se to te, its 217

forward and backward edge embeddings are: 218{
efwd = ( 1

me

∑me
k=1 t

e
k)W

F + bF

ebwd = ( 1
me

∑me
k=1 t

e
k)W

B + bB
(1) 219

AMR graphs are acyclic, ensuring at most one 220

edge connects any given pair of nodes. Therefore, 221

the edge embedding is well-defined: 222

∀s, t ∈ V, es,t =


efwd if se = s and te = t

ebwd if te = s and se = t

0 otherwise
(2) 223

Graph encoder: The graph encoder resem- 224

bles the Transformer encoder, as shown in Fig- 225

ure 2. However, it incorporates a unique multi- 226

head attention mechanism for graphs, as Fig- 227

ure 4 depicts. The node embedding is V n = 228

Kn = Qn =
[
v1 v2 · · · v|V|

]⊤ and the 229

edge embedding for a given node v is Ev = 230[
ev,1 ev,2 · · · ev,|V|

]⊤. 231

We present a graph attention mechanism inspired 232

by the work of Song et al. (2020). To leverage 233
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Figure 3: An example of graph embeddings. The nodes are “constrain” and “less”. The label of the edge is “degree”.

Figure 4: Graph multi-head attention.

edge information, we incorporate edge embed-234

dings into the node value and node key compo-235

nents through two distinct linear projections from236

Rdedge to Rdnode defined by matrices W V
e ,WK

e and237

bias terms bV ,bK , respectively. As discussed by238

Cai and Lam (2020), we treat the graph as fully239

connected with specialized edge labels, facilitat-240

ing information exchange. The formulation of this241

attention mechanism is as follows:242 
Vi = V n +EvW

V
e + bV

Ki = Kn +EvW
K
e + bK

Qi = Qn
i

(3)243

GraphAttention(Q,K, V )i =

Multihead-Attention(Qi,Ki, Vi)
(4)244

The graph encoder is “pretrained” in a unique245

way. Its structure is similar to the Transformer en-246

coder, allowing the central part to be initialized247

by pretrained BART parameters, except for the248

two additional linear projections depicted in Fig-249

ure 4. This initialization process can enhance the250

language capabilities of the graph encoder.251

Hidden representation merging: To merge the252

hidden representations from the two encoders, we253

concatenate the two hidden representations and ap-254

ply layer normalization (Ba et al., 2016).255

Sequence decoder: The sequence decoder in256

DualGen follows the pretrained BART decoder, as257

illustrated in Figure 2.258

Dataset Train Dev Test
AMR2.0 36,521 1,368 1,371
AMR3.0 55,635 1,722 1,898

Table 1: Statistics of AMR2.0 and AMR3.0.

3.3 Two-Stage Training 259

Existing AMR datasets have limited size and may 260

be inadequate for training effective graph encoders. 261

We employ a two-stage training strategy to align 262

with prior research (Bai et al., 2022; Bevilacqua 263

et al., 2021; Ribeiro et al., 2021a). 264

For the first stage, we employ model-generated 265

silver data for pretraining. We randomly sam- 266

ple 200k entries from the Gigaword dataset 267

(LDC2011T07) (Parker et al., 2011). We use the 268

AMR parsing model parse_xfm_bart_base from 269

amrlib (Jascob, 2020) to generate the correspond- 270

ing AMR graphs and remove those not following 271

AMR rules. For the second stage, we employ exist- 272

ing AMR datasets for fine-tuning. 273

4 Experiments 274

We assess the performance of DualGen compared 275

to state-of-the-art models on authoritative datasets. 276

We investigate the influence of graph complexity 277

and evaluate the models’ capacity to process graph 278

structure through human evaluation. Additionally, 279

we compared DualGen’s performance with the 280

most potent PLMs, including LLaMA (Touvron 281

et al., 2023) and GPT-4 (OpenAI, 2023). 282

4.1 Dataset 283

Following previous works (Bai et al., 2022; Ribeiro 284

et al., 2021b; Bevilacqua et al., 2021) , we 285

evaluate our model using the two most preva- 286

lent and authoritative AMR datasets, AMR2.0 287

(LDC2017T10)(Knight et al., 2017) and AMR3.0 288

(LDC2020T02) (Knight et al., 2016) datasets. Ta- 289

ble 1 presents dataset statistics for both. 290
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4.2 Evaluation Metrics291

Following previous work (Bai et al., 2022; Bevilac-292

qua et al., 2021), we use three automated evalua-293

tion metrics: BLEU (Papineni et al., 2002), Meteor294

(Banerjee and Lavie, 2005), and chrF++ (Popović,295

2015). We also perform a human evaluation to296

assess language quality and semantic similarity.297

4.3 Compared Models298

We select the following representative methods for299

comparison, including the state-of-the-art approach.300

(1) Guo et al. (2019), a g2s model that uses densely301

connected graph convolutional networks with at-302

tention mechanisms; (2) Song et al. (2020), a g2s303

model that uses a structure-aware Transformer en-304

coder with vectorized edge information; (3) Ribeiro305

et al. (2021a), a s2s model based on PLMs 2; (4)306

Bevilacqua et al. (2021), a s2s model based on307

PLMs that uses special linearization method and308

vocabulary; (5) Ribeiro et al. (2021b), a s2s model309

based on PLMs that includes a graph convolutional310

network adapter; (6) Bai et al. (2022), the state-of-311

the-art method, a s2s model based on PLMs that312

uses a unified graph pretraining framework.313

4.4 Settings314

We use the BART-large model (Lewis et al., 2020)315

as the base model of DualGen. DualGen com-316

prises 12 sequence encoder layers, 12 graph en-317

coder layers, and 12 sequence decoder layers. The318

sequence encoder and decoder need minimal fine-319

tuning since they share BART’s architecture; the320

graph encoder requires more fine-tuning with a dif-321

ferent architecture. Consequently, we employ three322

distinct learning rates for the three components.323

We select hyperparameters by validation set per-324

formance. For silver-data training, the model un-325

dergoes 6,000 steps over 20 epochs with updates326

every 8 steps, with a scale tolerance of 0.5 to filter327

out low-quality data. For fine-tuning, the model un-328

dergoes 13,000 steps over 65 epochs, with updates329

every 4 steps. In both phases, the initial learn-330

ing rates are 1 × 10−6 for the sequence encoder,331

4× 10−5 for the graph encoder, and 8× 10−6 for332

the sequence decoder. We use Adam (Kingma and333

Ba, 2015) as optimizer with β1 = 0.9, β2 = 0.999,334

and a clipping threshold of 0.1.335

Figure 5: The impact of graph complexity on model
performance.

4.5 Main Results 336

Table 2 shows the results. DualGen outperforms 337

all other methods on all three metrics. Compared 338

to the state-of-the-art model (Bai et al., 2022), it 339

achieves a 1.8-point improvement in BLEU, 2.3 340

points in Meteor, and 0.8 points in chrF++ on 341

AMR2.0 dataset. Similarly, on AMR3.0, DualGen 342

achieves a 2.6-point increase in BLEU, 2.8 points 343

in Meteor, and 1.1 points in chrF++. 344

Models utilizing s2s PLMs consistently outper- 345

form un-pretrained g2s models. This suggests that 346

pretraining on large corpora significantly enhances 347

model performance, confirming the validity of our 348

choice to employ PLM-based methods. 349

Utilizing silver data leads to better performance 350

than methods not incorporating such augmenta- 351

tion. This highlights the effectiveness of our use of 352

model-generated silver data. 353

Compared with Ribeiro et al. (2021a), which 354

shares the same architecture and method as Dual- 355

Gen without graph encoders, DualGen consistently 356

achieves superior performance. This underscores 357

the effectiveness of incorporating a graph encoder 358

in AMR-to-text generation. Further details of abla- 359

tion studies can be found in Appendix A. 360

4.6 Impact of Graph Complexity 361

To determine the robustness of DualGen across 362

varying levels of graph complexity and its effective- 363

ness in processing graph structure, we investigate 364

how graph complexity affects the performance of 365

g2s models, s2s models, and DualGen. We choose 366

Guo et al. (2019) and Ribeiro et al. (2021a)3 as the 367

representative g2s and s2s models, respectively. 368

A higher edge-to-node ratio suggests a more 369

2Ribeiro et al. (2021a) uses the original Bart which shares
the same architecture and training method as DualGen without
graph encoders, with only minor vocabulary differences.

3We use the model in Ribeiro et al. (2021a) without silver
data pretraining, which is the original Bart model. It shares
architecture and method with DualGen without graph encoder.
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Dataset Model Silver Data BLEU Meteor chrF++

AMR2.0

Guo et al. (2019)† 0 27.6 33.1‡ 57.3
Song et al. (2020)† 0 34.2 38.0 68.4‡

Ribeiro et al. (2021a) (Bartlarge) 0 43.5 42.9 73.9‡

Ribeiro et al. (2021a) (Bartlarge) 200k 44.7 43.7 -
Bevilacqua et al. (2021) (Bartlarge) 200k 45.9 41.8 74.2
Ribeiro et al. (2021b) (T5base) 0 44.0 41.9‡ 71.2
Ribeiro et al. (2021b) (T5large) 0 46.6 42.8‡ 72.9
Bai et al. (2022)(Bartbase) 200k 46.6 41.4 74.6
Bai et al. (2022)(Bartlarge) 200k 49.8 42.6 76.2
DualGen (Bartlarge) 0 47.9 43.3 74.6
DualGen (Bartlarge) 200k 51.6 44.9 77.0

AMR3.0

Song et al. (2020)† 0 37.9‡ 39.4‡ 70.8‡

Bevilacqua et al. (2021) (Bartlarge) 200k 46.5 41.7 73.9
Ribeiro et al. (2021b) (T5base) 0 44.1 42.8‡ 73.4
Ribeiro et al. (2021b) (T5large) 0 48.0 44.0‡ 73.2
Bai et al. (2022)(Bartbase) 200k 45.9 40.8 73.8
Bai et al. (2022)(Bartlarge) 200k 49.2 42.3 76.1
DualGen (Bartlarge) 0 49.5 43.9 75.7
DualGen (Bartlarge) 200k 51.8 45.1 77.2

Table 2: Results of AMR-to-text generation for the AMR2.0 and AMR3.0 test sets. Models marked with † are g2s
models. We calculate results marked with ‡ as they are not reported in the original paper. The Silver Data column
indicates how many data entries are used for pretraining. The best results within each dataset are denoted in bold.

complex graph with intricate node relationships.370

We use this ratio to measure graph complexity and371

conduct regression analysis to examine its connec-372

tion with model performance, measured by the373

BLEU score. A steeper regression slope indicates374

better graph processing ability. A higher regression375

line indicates superior overall performance.376

Figure 5 presents the regression results. From377

the regression slopes, we infer that g2s has the378

best ability to process graph, and DualGencomes379

next, performing better than s2s, showcasing the380

usefulness of the additional graph encoder.381

Regarding language skills measured by inter-382

cepts, s2s and DualGen perform similarly, surpass-383

ing g2s. This confirms the dual encoder-decoder384

architecture maintains comparable language skills385

to PLM-based s2s methods.386

4.7 Model Failures387

To explore the shortcomings of the above three388

models Guo et al. (2019), Ribeiro et al. (2021a),389

and DualGen, we analyzed the failed cases. Entries390

with a BLEU score below 25 are considered failed.391

The results are presented in Table 3. Compared392

with g2s and s2s models, for failed instances, Du-393

alGen exhibits fewer edges and nodes, fewer node394

reentrance, and lower graph depth, indicating more 395

superficial graph structures. As the s2s model is 396

the same as DualGen without graph encoders, the 397

results imply that DualGen is less sensitive to in- 398

tricate graph architectures. This underscores the 399

efficacy of the graph encoder in processing AMR 400

graphs. 401

4.8 Human Evaluation 402

To further assess the performance of the models, we 403

conduct a human evaluation. Following previous 404

work (Ribeiro et al., 2021b,a), we randomly select 405

100 AMR graphs from the AMR2.0 test set. Six 406

annotators with an English background assessed 407

these samples, scoring 0 to 10 for language quality 408

and semantic similarity. Each entry was assigned 409

to three annotators to assess the performance of 410

the six tested models. Further details can be found 411

in Appendix C. Table 4 shows human evaluation 412

results. 413

For language quality, PLM-based s2s ap- 414

proaches consistently outperform the g2s method, 415

indicating superior language proficiency. DualGen 416

achieves language quality scores comparable to 417

other PLM-based methods, affirming its similar 418

language capabilities to PLMs. 419
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Model Architecture # Failed Edge Node Reentrance Depth
Guo et al. (2019) g2s 751 19.37 18.55 1.82 3.39
Ribeiro et al. (2021a) s2s 347 18.68 17.91 1.77 3.23
DualGen dual encoder 260 18.22 17.65 1.57 3.10

Table 3: Results of model failure analysis. All models are trained without silver data. # Failed indicates the number
of failed cases. Edge, Node, Reentrance, and Depth indicate the average number of edges, average number of nodes,
average number of reentrance nodes, and average graph depth of the failed cases, respectively.

Model Architecture Silver Data quality similarity
Song et al. (2020) g2s 0 8.22 8.01
Ribeiro et al. (2021a) (Bartlarge) s2s 0 9.26 8.26
Bevilacqua et al. (2021)(Bartlarge) s2s 200k 9.11 8.35
Bai et al. (2022) (Bartlarge) s2s 200k 9.42 8.57
DualGen (Bartlarge) dual encoder 0 9.29 8.59
DualGen (Bartlarge) dual encoder 200k 9.38 8.98

Table 4: Results of human evaluation on the AMR2.0 test set. Our model significantly outperforms comparison
methods, as indicated by T-tests with a significance level of p < 0.05. The best language quality scores are
underlined; the best semantic similarity scores are in bold.

Model SD BLEU Meteor chrF++

LLaMA 0 38.9 40.3 72.2
200k 44.5 41.9 73.8

DualGen 0 47.9 43.3 74.6
200k 51.6 44.9 77.0

Table 5: Results of fine-tuned LLaMA-2-7B on the
AMR2.0 dataset. SD stands for Silver Data.

Regarding semantic similarity, DualGen without420

silver data pretraining achieves a higher similarity421

score than other un-pretrained methods. DualGen422

with silver data pretraining significantly outper-423

forms all other methods, demonstrating the benefits424

of the dual encoder architecture.425

4.9 Comparison with the Most Powerful426

PLMs427

Recently, LLMs have demonstrated impressive lan-428

guage generation capabilities on various NLP tasks.429

We evaluate the performance of LoRA(Hu et al.,430

2021) fine-tuned LLaMA(Touvron et al., 2023),431

GPT-3.5(OpenAI, 2021), and GPT-4(OpenAI,432

2023) in AMR-to-text generation using the433

AMR2.0 test dataset. The results are presented434

in Table 5 and Table 6. Further details can be found435

in Appendix B.436

LoRA fine-tuned LLaMA-2-7B model performs437

comparably with fully fine-tuned smaller models438

Model shot BLEU Meteor chrF++
GPT-3.5 0 6.9 25.4 49.8
GPT-3.5 3 14.6 28.6 53.4
GPT-3.5 8 17.7 29.9 55.1
GPT-3.5 10 18.4 29.9 55.5
GPT-3.5 15 18.5 30.3 56.2
GPT-4 15 30.8 36.7 64.7

Table 6: Results of few-shot prompted GPT-3.5 and
GPT-4 on the AMR2.0 test set.

Ribeiro et al. (2021a), and performs worse than Du- 439

alGen. With a s2s architecture, fine-tuned LLaMA 440

cannot use complete graph structure information 441

and struggles with entity relations. 442

Although GPTs perform exceptionally well in 443

many language-related tasks, they encounter dif- 444

ficulties in AMR-to-text generation without fine- 445

tuning. We design prompts for in-context learn- 446

ing with a maximum of 15 shots due to the token 447

limitation. GPT-4 with 15 shots outperforms all 448

other LLM settings but lags significantly behind 449

fine-tuned PLM methods. 450

To conclude, LLMs, including GPTs and 451

LLaMA, are not proficient in AMR-to-text gen- 452

eration, with DualGen yielding significantly better 453

results after training. Exploring smaller models for 454

these specific tasks is worthwhile, as LLMs cannot 455

substitute these models. 456
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AMR Graph Text
(a / agitate-01

:ARG0 (s2 / spring-up-02
:ARG1 (s / scene

:quant (m2 / many)
:mod (h / heroic)
:mod (t2 / tragic)
:topic (a2 / and

:op1 (s3 / spear
:ARG1-of (s4 / shine-01))

:op2 (h2 / horse
:ARG1-of (a3 / armor-01)))

:ARG2-of (s5 / stir-02))
:location (m3 / mind

:poss i))
:ARG1 (s6 / string

:poss (m / memory
:poss (i / i))
:mod (t4 / thing

:ARG1-of (t3 / think-01)))
:frequency (o / occasional))

Reference answer: the thought-strings of my mem-
ory have been agitated from time to time - many
heroic, stirring, and tragic scenes of shining spears
and armored horses spring up in my mind.
Song et al. (2020): occasionally, my mem-
ory has been touched by many heroic scene
in my mind springing up in shiney spears and ar-
mored horses.
Ribeiro et al. (2021a): my memory strings
of thoughts are occasionally agitated by the
stirring up of many heroic and tragic scenes of shin-
ing spears and armored horses in my mind.
Bai et al. (2022): many heroic and tragic scenes that
spring up in my mind of stirring spears and armored
horses occasionally agitate the strings of thought in
my memory.
DualGen: occasionally, my memory’s string of
thoughts is agitated by the many stirring, heroic and
tragic scenes of shining spears and armored horses
that spring up in my mind.

Table 7: Case study. The AMR graph is illustrated in its linearized format on the left side of the table. On the right,
we present the reference answer from the AMR3.0 dataset alongside the model-generated answers. Problematic text
is underlined.

4.10 Case Study457

Table 7 presents a case study from the AMR2.0 test458

set, highlighting the superior performance of Du-459

alGen. It showcases sequences generated by both460

DualGen and the baseline g2s (Song et al., 2020)461

and s2s models (Ribeiro et al., 2021a; Bai et al.,462

2022), alongside the reference answer provided by463

the AMR2.0 dataset.464

The answer generated by Song et al. (2020) con-465

tains grammatical errors, such as “many heroic466

scene” instead of “many heroic scenes”. Further-467

more, the phrase “in my mind springing up in shiny468

spears and armored horses” is unclear and ambigu-469

ous. These examples highlight the limited language470

proficiency of the g2s model.471

The s2s PLM-based methods Ribeiro et al.472

(2021a); Bai et al. (2022) are proficient in generat-473

ing grammatically correct and coherent sentences.474

However, Ribeiro et al. (2021a) overlooks specific475

entities, such as “spring up’. Both methods misin-476

terpret edge relationships, failing to recognize that477

“heroic”, “tragic”, and “stirring up” should be jux-478

taposed. Furthermore, Bai et al. (2022) mistakenly479

employ “stirring” instead of “shining” to modify480

“spears”.481

Our model, DualGen, is free of grammatical 482

errors, generates high-quality sentences, and accu- 483

rately represents all node entities and edge relations. 484

This demonstrates that our PLM-based model pos- 485

sesses strong language skills and simultaneously 486

excels in managing graph structures. 487

5 Conclusion 488

We explore a dual encoder-decoder architecture 489

model for the AMR-to-text generation task. This 490

model comprises a graph encoder, a sequence 491

encoder, and a sequence decoder. Our model’s 492

architecture is specially designed to be compati- 493

ble with Transformer encoder-decoder architecture, 494

and all three primary components, including the 495

graph encoder, can be initialized by PLMs such 496

as BART (Lewis et al., 2020), GPT2 (Radford 497

et al., 2019), and T5 (Raffel et al., 2020). This dual 498

encoder-decoder architecture enhances the model’s 499

capability to process graph structure information 500

while maintaining language proficiency on par with 501

PLMs. Our model surpasses the current state-of- 502

the-art methods across multiple benchmarks for the 503

AMR-to-text task. 504
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6 Limitations505

For the datasets, we only use AMR2.0 (Knight506

et al., 2017) and AMR3.0 (Knight et al., 2016)507

as golden AMR-text datasets. Although some508

prior works (Bai et al., 2022) use three addi-509

tional datasets: The Little Prince (TLP), the510

Bio datasets from https://amr.isi.edu/index.511

html, and the New3 dataset (part of AMR3.0 but512

not AMR2.0), we omit them from our analysis as513

their size is relatively small and they are used for514

out-of-distribution evaluations in previous studies,515

which is not the focus of our paper.516

For the experiments, we only test our dual517

encoder-decoder method based on the BART-518

large(Lewis et al., 2020) pretrained language model.519

We choose BART because it is suitable for genera-520

tion tasks and has been frequently used in previous521

studies.522

For Section 4.9 where we use LLaMA(Touvron523

et al., 2023) for comparison, we only tested the524

performance of the LoRA-finetuned model. We do525

not test the performance of fully-finetuned LLaMA.526

7 Ethical Statement527

We anticipate no ethics-related concerns in our re-528

search. All datasets and models used are open-529

source, and we will release our code publicly to530

facilitate reproducibility.531
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A Ablation study 792

To further demonstrate the capabilities of each com- 793

ponent within DualGen, we conducted an ablation 794

study. This involved examining the performance of 795

different model variations: 796

• DualGen w/o SE: DualGen without the se- 797

quence encoder; 798

• DualGen w/o GE: DualGen without the graph 799

encoder; 800

• DualGen w/o GP: DualGen with the graph 801

encoder trained from scratch. 802

• DualGen w/o SE w/o GP: DualGen without 803

the sequence encoder, with the graph encoder 804

trained from scratch. 805

We use GP to indicate graph pretraining, SE to 806

indicate sequence encoders, and GE to indicate 807

graph encoders. The outcomes for the above four 808

model variants are presented in Table 8. 809

DualGen w/o SE w/o GP and DualGen w/o 810

GP exhibit notably poor performance. This is be- 811

cause the AMR datasets are insufficient for training, 812

given their limited size compared to the enormous 813

size of the graph encoders. The training subsets 814

of the AMR2.0 and AMR3.0 datasets comprise 815

36k and 56k entries, respectively. In contrast, the 816

graph encoders contain 152M trainable parameters, 817

akin in size to the Bart large encoders. In compar- 818

ison, the full DualGen model encompasses 560M 819

parameters, while the previously best-performing 820

g2s model (Song et al., 2020) comprises a total of 821

62M parameters. Consequently, when fine-tuned 822

on the AMR datasets, DualGen w/o SE w/o GP and 823

DualGen w/o GP scarcely acquire meaningful in- 824

formation, consistently yielding a low BLEU score. 825

This underscores the efficacy of our approach in 826

"pretraining" the graph encoder in a specialized 827
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Dataset Model Silver Data BLEU Meteor chrF++

AMR2.0

DualGen w/o SE w/o GP 0 0.0 1.0 3.4
DualGen w/o GP 0 0.1 4.4 15.5
DualGen w/o SE 0 22.1 31.4 58.7
DualGen w/o GE 0 43.8 42.1 72.1
Ribeiro et al. (2021a) 0 43.5 42.9 73.9‡

DualGen 0 47.9 43.3 74.6
DualGen 200k 51.6 44.9 77.0

AMR3.0

DualGen w/o SE w/o GP 0 0.0 1.3 3.3
DualGen w/o GP 0 0.0 1.0 4.1
DualGen w/o SE 0 22.2 31.6 58.2
DualGen w/o GE 0 45.7 42.9 73.4
DualGen 0 49.5 43.9 75.7
DualGen 200k 51.8 45.1 77.2

Table 8: Results of ablation study. We calculate results marked with ‡ as they are not reported in the original paper.
The Silver Data column indicates the total number of data entries used for pretraining. The best results within each
dataset are denoted in bold.

manner, initializing the GNN using Transformer828

encoder parameters.829

DualGen w/o SE displays significantly lower830

performance compared to DualGen w/o GE and831

the full DualGenmodel. With only graph encoders,832

DualGen w/o SE encounters challenges in AMR-to-833

text generation. This is because the graph encoder834

is designed not to retain all information, particu-835

larly entity details of the nodes. Instead, it priori-836

tizes structural information and facilitates informa-837

tion exchange between two nodes connected by an838

edge.839

DualGen w/o GE performs similarly to the find-840

ings of Ribeiro et al. (2021a) without pretraining on841

silver data, aligning with our expected outcomes.842

Leveraging the strength of pretrained Transformer-843

based language models, the variant DualGen w/o844

GE notably outperforms the variant DualGen w/o845

SE.846

The full DualGen model significantly surpasses847

DualGen w/o SE and DualGen w/o GE without848

individual encoders, highlighting the importance849

of incorporating both sequence and graph encoders850

for enhanced performance.851

B Large language models experiment852

settings853

For LLaMA, we fine-tune the LLaMA-2-7B854

model using the code offered by Meta Research855

in https://github.com/facebookresearch/856

llama-recipes. We employ Fully Sharded857

Data Parallel (FSDP) and Parameter-Efficient858

parameter value
temperature 0.01
top p 1.0
n 1
frequency penalty 0.0
max tokens 2048

Table 9: The settings of GPT-3.5 and GPT-4.

Fine-Tuning (PEFT) to fine-tune the model, where 859

we choose LoRA (Hu et al., 2021) as the PEFT 860

method. We set the learning rate to 1× 10−4, and 861

trained 10 epochs. 862

For the experiment on GPTs, we use the 863

OpenAI ChatCompletion API https://platform. 864

openai.com/docs/api-reference provided by 865

OpenAI, with the settings shown in table 9. 866

We use the following system prompt to instruct 867

the model: 868

System:

Recover the text represented by
the Abstract Meaning
Representation graph (AMR
graph) enclosed within triple
quotes. Utilize only the
information provided in the
input. Output only the
recovered text.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

869

For few-shot prompting, we use the format illus- 870
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trated in the following example:871

User:

"""
(p / possible-01~e.1
:ARG1 (m / make-05~e.2
:ARG0 (c / company :wiki

"Hallmark_Cards"↪→

:name (n / name :op1
"Hallmark"~e.0))↪→

:ARG1 (f / fortune~e.4
:source~e.6 (g / guy~e.8

:mod (t / this~e.7)))))
"""

Assistant:

Hallmark could make a fortune off
of this guy.↪→

872

We evaluate GPT-3.5 using the entire AMR2.0873

test set; for GPT-4, we assess its performance by874

randomly selecting and testing 400 entries from the875

AMR2.0 test set.876

C Human evaluation settings877

For human evaluation, we use the test set of878

AMR2.0. We filter out sentences shorter than 30879

characters to eliminate meaningless entries like880

"2004-10-09". Following this, we randomly pick881

100 entries and assign them IDs from 1 to 100.882

Six volunteer annotators with an English educa-883

tion background carry out the annotation process.884

Three annotate entries 1 to 50, while the other three885

annotate entries 51 to 100.886

Each entry i contains a reference text Ti from887

the AMR2.0 dataset and:888

• the generated output P 1
i of Song et al. (2020);889

• the generated output P 2
i of Ribeiro et al.890

(2021a);891

• the generated output P 3
i of Bevilacqua et al.892

(2021);893

• the generated output P 4
i of Bai et al. (2022);894

• the generated output P 5
i of DualGen without895

silver data pretraining;896

• the generated output P 6
i of DualGen with sil-897

ver data pretraining.898

For each assigned entry i, the annotator assigns 899

scores q1i , · · · , q6i to rate the quality of sentence 900

P 1
i , · · · , P 6

i and s1i , · · · , s6i to measure the similar- 901

ity in meaning between Ti and P 1
i , · · · , P 6

i . The 902

scores q1i , · · · , q6i , s1i , · · · , s6i are integers ranging 903

from 0 to 10 (inclusive). The rating criteria are 904

outlined in Table 10. 905
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Score Criteria for Quality Score Criteria for Similarity Score
0 The sentence has numerous grammar er-

rors or contains many irrelevant words or
phrases, making it incomprehensible to read-
ers.

The information conveyed in the generated
output text is irrelevant to the information in
the reference text.

2 The sentence has many errors in grammar,
vocabulary, or word usage. Readers find it
challenging to grasp the sentence’s intended
meaning.

The generated output primarily conveys in-
formation unrelated to the information in the
reference text, only mentioning some of the
concepts covered in the reference text.

4 The sentence has noticeable grammar, word,
or phrase usage errors. Through careful read-
ing, readers can generally understand the
main points of the sentence.

The generated output conveys some infor-
mation that aligns with the reference text,
but there are apparent differences in their
meanings.

6 The sentence has some grammatical errors
or inappropriate word choices/phrases. The
overall expression of ideas is somewhat co-
herent. Readers can generally understand
the meaning.

The generated output primarily conveys the
information covered in the reference text but
either misses important details or includes
some information not mentioned in the ref-
erence text.

8 The sentence contains a few grammar errors,
uses words and phrases appropriately, ex-
presses ideas coherently and naturally, and
follows a logical structure that makes it easy
for readers to understand the meaning.

The generated output conveys most of the
information covered in the reference test but
omits a few unimportant details or includes
unimportant information not mentioned in
the standard text.

10 The sentence is free of grammar errors, uses
appropriate words and phrases, expresses
ideas coherently and naturally, follows a log-
ical structure, and can be easily understood
by readers in terms of its meaning.

The generated output conveys the same in-
formation as the reference text, neither omit-
ting details nor including information not
mentioned in the reference.

Table 10: Rating criteria for human evaluation.
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